Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R277-R296, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189166

RESUMO

The inner ear of teleost fish regulates the ionic and acid-base chemistry and secretes protein matrix into the endolymph to facilitate otolith biomineralization, which is used to maintain vestibular and auditory functions. The otolith is biomineralized in a concentric ring pattern corresponding to seasonal growth, and this calcium carbonate (CaCO3) polycrystal has become a vital aging and life-history tool for fishery managers, ecologists, and conservation biologists. Moreover, biomineralization patterns are sensitive to environmental variability including climate change, thereby threatening the accuracy and relevance of otolith-reliant toolkits. However, the cellular biology of the inner ear is poorly characterized, which is a hurdle for a mechanistic understanding of the underlying processes. This study provides a systematic characterization of the cell types in the inner ear of splitnose rockfish (Sebastes diploproa). Scanning electron microscopy revealed the apical morphologies of six inner ear cell types. In addition, immunostaining and confocal microscopy characterized the expression and subcellular localization of the proteins Na+-K+-ATPase, carbonic anhydrase, V-type H+-ATPase, Na+-K+-2Cl--cotransporter, otolith matrix protein 1, and otolin-1 in six inner ear cell types bordering the endolymph. This fundamental cytological characterization of the rockfish inner ear epithelium illustrates the intricate physiological processes involved in otolith biomineralization and highlights how greater mechanistic understanding is necessary to predict their multistressor responses to future climate change.


Assuntos
Membrana dos Otólitos , Perciformes , Animais , Membrana dos Otólitos/química , Membrana dos Otólitos/fisiologia , Membrana dos Otólitos/ultraestrutura , Peixes , Células Epiteliais
2.
J Exp Biol ; 226(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37522267

RESUMO

The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.

3.
Sci Total Environ ; 877: 162860, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931527

RESUMO

We investigated whether CO2-induced ocean acidification (OA) affects dopamine receptor-dependent behavior in bicolor damselfish (Stegastes partitus). Damselfish were kept in aquaria receiving flow through control (pH ~ 8.03; pCO2 ~ 384 µatm) or OA (pH ~ 7.64; CO2 ~ 1100 µatm) seawater at a rate of 1 L min-1. Despite this relatively fast flow rate, fish respiration further acidified the seawater in both control (pH ~7.88; pCO2 ~ 595 µatm) and OA (pH ~7.55; pCO2 ~ 1450 µatm) fish-holding aquaria. After five days of exposure, damselfish locomotion, boldness, anxiety, and aggression were assessed using a battery of behavioral tests using automated video analysis. Two days later, these tests were repeated following application of the dopamine D1 receptor agonist SKF 38393. OA-exposure induced ceiling anxiety levels that were significantly higher than in control damselfish, and SKF 38393 increased anxiety in control damselfish to a level not significantly different than that of OA-exposed damselfish. Additionally, SKF 38393 decreased locomotion and increased boldness in control damselfish but had no effect in OA-exposed damselfish, suggesting an alteration in activity of dopaminergic pathways that regulate behavior under OA conditions. These results indicate that changes in dopamine D1 receptor function affects fish behavior during exposure to OA. However, subsequent measurements of seawater sampled using syringes during the daytime (~3-4 pm local time) from crevasses in coral reef colonies, which are used as shelter by damselfish, revealed an average pH of 7.73 ± 0.03 and pCO2 of 925.8 ± 62.2 µatm; levels which are comparable to Representative Concentration Pathway (RCP) 8.5 predicted end-of-century mean OA levels in the open ocean. Further studies considering the immediate environmental conditions experienced by fish as well as individual variability and effect size are required to understand potential implications of the observed OA-induced behavioral effects on damselfish fitness in the wild.


Assuntos
Recifes de Corais , Água do Mar , Animais , Dopamina , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina , Acidificação dos Oceanos , Peixes/metabolismo , Agonistas de Dopamina , Oceanos e Mares
4.
Acta Histochem ; 124(7): 151952, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36099745

RESUMO

Immunohistochemistry (IHC) is a powerful biochemical technique that uses antibodies to specifically label and visualize proteins of interests within biological samples. However, fluid-preserved specimens within natural history collection often use fixatives and protocols that induce high background signal (autofluorescence), which hampers IHC as it produces low signal-to-noise ratio. Here, we explored techniques to reduce autofluorescence using sodium borohydride (SBH), citrate buffer, and their combination on fish tissue preserved with paraformaldehyde, formaldehyde, ethanol, and glutaraldehyde. We found SBH was the most effective quenching technique, and applied this pretreatment to the gill or skin of 10 different archival fishes - including specimens that had been preserved in formaldehyde or ethanol for up to 65 and 37 years, respectively. The enzyme Na+/K+-ATPase (NKA) was successfully immunostained and imaged using confocal fluorescence microscopy, allowing for the identification and characterization of NKA-rich ionocytes essential for fish ionic and acid-base homeostasis. Altogether, our SBH-based method facilitates the use of IHC on archival samples, and unlocks the historical record on fish biological responses to environmental factors (such as climate change) using specimens from natural history collections that were preserved decades to centuries ago.


Assuntos
Formaldeído , Museus , Adenosina Trifosfatases , Animais , Boroidretos , Citratos , Etanol , Peixes , Fixadores , Formaldeído/química , Glutaral
5.
Sci Total Environ ; 823: 153690, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143791

RESUMO

Over a decade ago, ocean acidification (OA) exposure was reported to induce otolith overgrowth in teleost fish. This phenomenon was subsequently confirmed in multiple species; however, the underlying physiological causes remain unknown. Here, we report that splitnose rockfish (Sebastes diploproa) exposed to ~1600 µatm pCO2(pH ~7.5) were able to fully regulated the pH of both blood and endolymph (the fluid that surrounds the otolith within the inner ear). However, while blood was regulated around pH 7.80, the endolymph was regulated around pH ~8.30. These different pH setpoints result in increased pCO2diffusion into the endolymph, which in turn leads to proportional increases in endolymph [HCO3-] and [CO32-]. Endolymph pH regulation despite the increased pCO2suggests enhanced H+removal. However, a lack of differences in inner ear bulk and cell-specific Na+/K+-ATPase and vacuolar type H+-ATPase protein abundance localization pointed out to activation of preexisting ATPases, non-bicarbonate pH buffering, or both, as the mechanism for endolymph pH-regulation. These results provide the first direct evidence showcasing the acid-base chemistry of the endolymph of OA-exposed fish favors otolith overgrowth, and suggests that this phenomenon will be more pronounced in species that count with more robust blood and endolymph pH regulatory mechanisms.


Assuntos
Membrana dos Otólitos , Água do Mar , Animais , Endolinfa/metabolismo , Peixes , Concentração de Íons de Hidrogênio
6.
Curr Biol ; 32(4): 927-933.e5, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35081331

RESUMO

The freshwater aquatic larvae of the Chaoborus midge are the world's only truly planktonic insects, regulating their buoyancy using two pairs of internal air-filled sacs, one in the thorax and the other in the seventh abdominal segment. In 1911, August Krogh demonstrated the larvae's ability to control their buoyancy by exposing them to an increase in hydrostatic pressure.1 However, how these insects control the volume of their air-sacs has remained a mystery. Gas is not secreted into the air-sacs, as the luminal gas composition is always the same as that dissolved in the surrounding water.1,2 Instead, the air-sac wall was thought to play some role.3-6 Here we reveal that bands of resilin in the air-sac's wall are responsible for the changes in volume. These bands expand and contract in response to changes in pH generated by an endothelium that envelops the air-sac. Vacuolar type H+ V-ATPase (VHA) in the endothelium acidifies and shrinks the air-sac, while alkalinization and expansion are regulated by the cyclic adenosine monophosphate signal transduction pathway. Thus, Chaoborus air-sacs function as mechanochemical engines, transforming pH changes into mechanical work against hydrostatic pressure. As the resilin bands interlaminate with bands of cuticle, changes in resilin volume are constrained to a single direction along the air-sac's longitudinal axis. This makes the air-sac functionally equivalent to a cross-striated pH muscle and demonstrates a unique biological role for resilin as an active structural element.


Assuntos
Água Doce , Água , Animais , Concentração de Íons de Hidrogênio , Larva/fisiologia , Água/metabolismo
7.
J Exp Biol ; 225(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35005768

RESUMO

Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2 and 1 kPa CO2 (2000-10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate for the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 min, thus restoring haemoglobin-O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 h, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3- in blood, which increased from ∼4 to ∼22 mmol l-1. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3- and pH, probably because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid-base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.


Assuntos
Bass , Animais , Bass/fisiologia , Dióxido de Carbono/toxicidade , Ecossistema , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Sci Total Environ ; 791: 148285, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126476

RESUMO

Ocean acidification (OA) has been proposed to increase the energetic demand for acid-base regulation at the expense of larval fish growth. Here, white seabass (Atractoscion nobilis) eggs and larvae were reared at control (542 ± 28 µatm) and elevated pCO2 (1831 ± 105 µatm) until five days post-fertilization (dpf). Skin ionocytes were identified by immunodetection of the Na+/K+-ATPase (NKA) enzyme. Larvae exposed to elevated pCO2 possessed significantly higher skin ionocyte number and density compared to control larvae. However, when ionocyte size was accounted for, the relative ionocyte area (a proxy for total ionoregulatory capacity) was unchanged. Similarly, there were no differences in relative NKA abundance, resting O2 consumption rate, and total length between control and treatment larvae at 5 dpf, nor in the rate at which relative ionocyte area and total length changed between 2 and 5 dpf. Altogether, our results suggest that OA conditions projected for the next century do not significantly affect the ionoregulatory capacity or energy consumption of larval white seabass. Finally, a retroactive analysis of the water in the recirculating aquarium system that housed the broodstock revealed the parents had been exposed to average pCO2 of ~1200 µatm for at least 3.5 years prior to this experiment. Future studies should investigate whether larval white seabass are naturally resilient to OA, or if this resilience is the result of parental chronic acclimation to OA, and/or from natural selection during spawning and fertilization in elevated pCO2.


Assuntos
Dióxido de Carbono , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Larva , Oceanos e Mares , Respiração
9.
J Exp Zool A Ecol Integr Physiol ; 335(9-10): 801-813, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33819380

RESUMO

The obligate air-breathing Amazonian fish, Arapaima gigas, hatch as water-breathing larvae but with development, they modify their swim bladder to an air-breathing organ (ABO) while reducing their gill filaments to avoid oxygen loss. Here, we show that significant changes already take place between 4 weeks (1.6 g) and 11 weeks (5 g) post hatch, with a reduction in gill lamellar surface area, increase in gill diffusion distance, and proliferation of the parenchyma in the ABO. By using a variety of methods, we quantified the surface area and diffusion distances of the gills and skin, and the swim bladder volume and anatomical complexity from hatch to 11-week-old juveniles. In addition, we identified the presence of two ionocyte types in the gills and show how these change with development. Until 1.6 g, A. gigas possess only the H+ -excreting/Na+ -absorbing type, while 5-g fish and adults have an additional ionocyte which likely absorbs H+ and Cl- and excretes HCO3- . The ionocyte density on the gill filaments increased with age and is likely a compensatory mechanism for maintaining ion transport while reducing gill surface area. In the transition from water- to air-breathing, A. gigas likely employs a trimodal respiration utilizing gills, skin, and ABO and thus avoid a respiratory-ion regulatory compromise at the gills.


Assuntos
Brânquias , Água , Animais , Peixes , Respiração , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
Interface Focus ; 11(2): 20200026, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33633829

RESUMO

Soluble adenylyl cyclase (sAC) is a HC O 3 - -stimulated enzyme that produces the ubiquitous signalling molecule cAMP, and deemed an evolutionarily conserved acid-base sensor. However, its presence is not yet confirmed in bony fishes, the most abundant and diverse of vertebrates. Here, we identified sAC genes in various cartilaginous, ray-finned and lobe-finned fish species. Next, we focused on rainbow trout sAC (rtsAC) and identified 20 potential alternative spliced mRNAs coding for protein isoforms ranging in size from 28 to 186 kDa. Biochemical and kinetic analyses on purified recombinant rtsAC protein determined stimulation by HC O 3 - at physiologically relevant levels for fish internal fluids (EC50 ∼ 7 mM). rtsAC activity was sensitive to KH7, LRE1, and DIDS (established inhibitors of sAC from other organisms), and insensitive to forskolin and 2,5-dideoxyadenosine (modulators of transmembrane adenylyl cyclases). Western blot and immunocytochemistry revealed high rtsAC expression in gill ion-transporting cells, hepatocytes, red blood cells, myocytes and cardiomyocytes. Analyses in the cell line RTgill-W1 suggested that some of the longer rtsAC isoforms may be preferentially localized in the nucleus, the Golgi apparatus and podosomes. These results indicate that sAC is poised to mediate multiple acid-base homeostatic responses in bony fishes, and provide cues about potential novel functions in mammals.

11.
Elife ; 92020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32840208

RESUMO

Previously, we showed that the evolution of high acuity vision in fishes was directly associated with their unique pH-sensitive hemoglobins that allow O2 to be delivered to the retina at PO2s more than ten-fold that of arterial blood (Damsgaard et al., 2019). Here, we show strong evidence that vacuolar-type H+-ATPase and plasma-accessible carbonic anhydrase in the vascular structure supplying the retina act together to acidify the red blood cell leading to O2 secretion. In vivo data indicate that this pathway primarily affects the oxygenation of the inner retina involved in signal processing and transduction, and that the evolution of this pathway was tightly associated with the morphological expansion of the inner retina. We conclude that this mechanism for retinal oxygenation played a vital role in the adaptive evolution of vision in teleost fishes.


Assuntos
Peixes/fisiologia , Oxigênio/metabolismo , Retina/metabolismo , Visão Ocular/fisiologia , Animais , Evolução Biológica , Anidrases Carbônicas/metabolismo , Concentração de Íons de Hidrogênio , Oncorhynchus mykiss/fisiologia
12.
J Comp Physiol B ; 190(4): 419-431, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468089

RESUMO

The inner ear is essential for maintaining balance and hearing predator and prey in the environment. Each inner ear contains three CaCO3 otolith polycrystals, which are calcified within an alkaline, K+-rich endolymph secreted by the surrounding epithelium. However, the underlying cellular mechanisms are poorly understood, especially in marine fish. Here, we investigated the presence and cellular localization of several ion-transporting proteins within the saccular epithelium of the Pacific Chub Mackerel (Scomber japonicus). Western blotting revealed the presence of Na+/K+-ATPase (NKA), carbonic anhydrase (CA), Na+-K+-2Cl--co-transporter (NKCC), vacuolar-type H+-ATPase (VHA), plasma membrane Ca2+ ATPase (PMCA), and soluble adenylyl cyclase (sAC). Immunohistochemistry analysis identified two distinct ionocytes types in the saccular epithelium: Type-I ionocytes were mitochondrion-rich and abundantly expressed NKA and NKCC in their basolateral membrane, indicating a role in secreting K+ into the endolymph. On the other hand, Type-II ionocytes were enriched in cytoplasmic CA and VHA, suggesting they help transport HCO3- into the endolymph and remove H+. In addition, both types of ionocytes expressed cytoplasmic PMCA, which is likely involved in Ca2+ transport and homeostasis, as well as sAC, an evolutionary conserved acid-base sensing enzyme that regulates epithelial ion transport. Furthermore, CA, VHA, and sAC were also expressed within the capillaries that supply blood to the meshwork area, suggesting additional mechanisms that contribute to otolith calcification. This information improves our knowledge about the cellular mechanisms responsible for endolymph ion regulation and otolith formation, and can help understand responses to environmental stressors such as ocean acidification.


Assuntos
Orelha Interna/imunologia , Células Epiteliais/imunologia , Epitélio/imunologia , Proteínas de Peixes/imunologia , Perciformes/imunologia , Adenilil Ciclases/imunologia , Animais , Anidrases Carbônicas/imunologia , Proteínas de Membrana Transportadoras/imunologia
13.
J Comp Physiol B ; 189(1): 81-95, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30357584

RESUMO

The development of osmoregulatory and gas exchange organs was studied in larval yellowfin tuna (Thunnus albacares) from 2 to 25 days post-hatching (2.9-24.5 mm standard length, SL). Cutaneous and branchial ionocytes were identified using Na+/K+-ATPase immunostaining and scanning electron microscopy. Cutaneous ionocyte abundance significantly increased with SL, but a reduction in ionocyte size and density resulted in a significant decrease in relative ionocyte area. Cutaneous ionocytes in preflexion larvae had a wide apical opening with extended microvilli; however, microvilli retracted into an apical pit from flexion onward. Lamellae in the gill and pseudobranch were first detected ~ 3.3 mm SL. Ionocytes were always present on the gill arch, first appeared in the filaments and lamellae of the pseudobranch at 3.4 mm SL, and later in gill filaments at 4.2 mm SL, but were never observed in the gill lamellae. Unlike the cutaneous ionocytes, gill and pseudobranch ionocytes had a wide apical opening with extended microvilli throughout larval development. The interlamellar fusion, a specialized gill structure binding the lamellae of ram-ventilating fish, began forming by ~ 24.5 mm SL and contained ionocytes, a localization never before reported. Ionocytes were retained on the lamellar fusions and also found on the filament fusions of larger sub-adult yellowfin tuna; however, sub-adult gill ionocytes had apical pits. These results indicate a shift in gas exchange and NaCl secretion from the skin to branchial organs around the flexion stage, and reveal novel aspects of ionocyte localization and morphology in ram-ventilating fishes.


Assuntos
Brânquias/metabolismo , Pele/metabolismo , Atum/metabolismo , Animais , Proteínas de Peixes/metabolismo , Brânquias/ultraestrutura , Larva/metabolismo , Larva/ultraestrutura , Microscopia Eletrônica de Varredura , Pele/ultraestrutura , Cloreto de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Bio Protoc ; 9(9): e3227, 2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33655013

RESUMO

Aquatic organisms have specialized cells called ionocytes that regulate the ionic composition, osmolarity, and acid/base status of internal fluids. In small aquatic organisms such as fishes in their early life stages, ionocytes are typically found on the cutaneous surface and their abundance can change to help cope with various metabolic and environmental factors. Ionocytes profusely express ATPase enzymes, most notably Na+/K+ ATPase, which can be identified by immunohistochemistry. However, quantification of cutaneous ionocytes is not trivial due to the limited camera's focal plane and the microscope's field-of-view. This protocol describes a technique to consistently and reliably identify, image, and measure the relative surface area covered by cutaneous ionocytes through software-mediated focus-stacking and photo-stitching-thereby allowing the quantification of cutaneous ionocyte area as a proxy for ion transporting capacity across the skin. Because ionocytes are essential for regulating ionic composition, osmolarity, and acid/base status of internal fluids, this technique is useful for studying physiological mechanisms used by fish larvae and other small aquatic organisms during development and in response to environmental stress.

15.
Biol Lett ; 14(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899125

RESUMO

The giant clam Tridacna crocea, native to Indo-Pacific coral reefs, is noted for its unique ability to bore fully into coral rock and is a major agent of reef bioerosion. However, T. crocea's mechanism of boring has remained a mystery despite decades of research. By exploiting a new, two-dimensional pH-sensing technology and manipulating clams to press their presumptive boring tissue (the pedal mantle) against pH-sensing foils, we show that this tissue lowers the pH of surfaces it contacts by greater than or equal to 2 pH units below seawater pH day and night. Acid secretion is likely mediated by vacuolar-type H+-ATPase, which we demonstrate (by immunofluorescence) is abundant in the pedal mantle outer epithelium. Our discovery of acid secretion solves this decades-old mystery and reveals that, during bioerosion, T. crocea can liberate reef constituents directly to the soluble phase, rather than producing sediment alone as earlier assumed.


Assuntos
Bivalves/metabolismo , Epitélio/química , Ácidos/metabolismo , Animais , Bivalves/química , Recifes de Corais , Concentração de Íons de Hidrogênio , ATPases Translocadoras de Prótons/análise
16.
J Exp Biol ; 221(Pt 10)2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29487152

RESUMO

Vertebrates reduce arterial blood pH (pHa) when body temperature increases. In water breathers, this response occurs primarily by reducing plasma HCO3- levels with small changes in the partial pressure of CO2 (PCO2 ). In contrast, air breathers mediate the decrease in pHa by increasing arterial PCO2  (PaCO2 ) at constant plasma HCO3- by reducing lung ventilation relative to metabolic CO2 production. Much less is known about bimodal breathers, which utilize both water and air. Here, we characterized the influence of temperature on arterial acid-base balance and intracellular pH (pHi) in the bimodal-breathing swamp eel, Monopterus albus This teleost uses the buccopharyngeal cavity for gas exchange and has very reduced gills. When exposed to ecologically relevant temperatures (20, 25, 30 and 35°C) for 24 and 48 h, pHa decreased by -0.025 pH units (U) °C-1 in association with an increase in PaCO2 , but without changes in plasma [HCO3-]. pHi was also reduced with increased temperature. The slope of pHi of liver and muscle was -0.014 and -0.019 U °C-1, while the heart muscle showed a smaller reduction (-0.008 U °C-1). When exposed to hypercapnia (7 or 14 mmHg) at either 25 or 35°C, M. albus elevated plasma [HCO3-] and therefore seemed to defend the new pHa set-point, demonstrating an adjusted control of acid-base balance with temperature. Overall, the effects of temperature on acid-base balance in M. albus resemble those in air-breathing amniotes, and we discuss the possibility that this pattern of acid-base balance results from a progressive transition in CO2 excretion from water to air as temperature rises.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Smegmamorpha/fisiologia , Temperatura , Animais , Bicarbonatos/sangue , Dióxido de Carbono/sangue , Feminino , Concentração de Íons de Hidrogênio , Masculino , Smegmamorpha/sangue
17.
PLoS One ; 11(12): e0167461, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936085

RESUMO

The market squid, Doryteuthis opalescens, is an important forage species for the inshore ecosystems of the California Current System. Due to increased upwelling and expansion of the oxygen minimum zone in the California Current Ecosystem, the inshore environment is expected to experience lower pH and [O2] conditions in the future, potentially impacting the development of seafloor-attached encapsulated embryos. To understand the consequences of this co-occurring environmental pH and [O2] stress for D. opalescens encapsulated embryos, we performed two laboratory experiments. In Experiment 1, embryo capsules were chronically exposed to a treatment of higher (normal) pH (7.93) and [O2] (242 µM) or a treatment of low pH (7.57) and [O2] (80 µM), characteristic of upwelling events and/or La Niña conditions. The low pH and low [O2] treatment extended embryo development duration by 5-7 days; embryos remained at less developed stages more often and had 54.7% smaller statolith area at a given embryo size. Importantly, the embryos that did develop to mature embryonic stages grew to sizes that were similar (non-distinct) to those exposed to the high pH and high [O2] treatment. In Experiment 2, we exposed encapsulated embryos to a single stressor, low pH (7.56) or low [O2] (85 µM), to understand the importance of environmental pH and [O2] rising and falling together for squid embryogenesis. Embryos in the low pH only treatment had smaller yolk reserves and bigger statoliths compared to those in low [O2] only treatment. These results suggest that D. opalescens developmental duration and statolith size are impacted by exposure to environmental [O2] and pH (pCO2) and provide insight into embryo resilience to these effects.


Assuntos
Decapodiformes/embriologia , Ecossistema , Embrião não Mamífero/embriologia , Oxigênio/metabolismo , Aclimatação , Algoritmos , Análise de Variância , Animais , California , Desenvolvimento Embrionário , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química , Estresse Fisiológico , Temperatura , Fatores de Tempo
18.
Sci Rep ; 6: 19850, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26806870

RESUMO

Aggression and responsiveness to noxious stimuli are adaptable traits that are ubiquitous throughout the animal kingdom. Like vertebrate animals, some invertebrates have been shown to exhibit anxiety-like behaviour and altered levels of aggression that are modulated by the neurotransmitter serotonin. To investigate whether this influence of serotonin is conserved in crabs and whether these behaviours are sensitive to human antidepressant drugs; the striped shore crab, Pachygrapsus crassipes, was studied using anxiety (light/dark test) and aggression (mirror test) paradigms. Crabs were individually exposed to acute doses of the selective serotonin reuptake inhibitor, fluoxetine (5 or 25 mg/L), commonly known as Prozac®, followed by behavioural testing. The high dose of fluoxetine significantly decreased anxiety-like behaviour but had no impact on mobility or aggression. These results suggest that anxiety-like behaviour is more sensitive to modulation of serotonin than is aggressiveness in the shore crab.


Assuntos
Antidepressivos/administração & dosagem , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Fluoxetina/administração & dosagem , Agressão/efeitos dos fármacos , Agressão/fisiologia , Animais , Ansiedade/fisiopatologia , Braquiúros/efeitos dos fármacos , Braquiúros/fisiologia , Modelos Animais de Doenças , Humanos , Serotonina/metabolismo
19.
Ecol Lett ; 16(11): 1393-404, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24015819

RESUMO

Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology.


Assuntos
Biocombustíveis , Indústrias , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Fotossíntese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...